Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA.

نویسندگان

  • F Repoila
  • S Gottesman
چکیده

Many environmental parameters modulate the amount of the RpoS sigma factor in Escherichia coli. Temperature control of RpoS depends on the untranslated RNA DsrA. DsrA activates RpoS translation by pairing with the leader of the mRNA. We find that temperature affects both the rate of transcription initiation of the dsrA gene and the stability of DsrA RNA. Both are increased at low temperature (25 degrees C) compared to 37 or 42 degrees C. The combination of these results is 25-fold-less DsrA at 37 degrees C and 30-fold less at 42 degrees C than at 25 degrees C. Using an adapted lacZ-based reporter system, we show that temperature control of transcription initiation of dsrA requires only the minimal promoter of 36 bp. Overall, transcription responses to temperature lead to a sixfold increase in DsrA synthesis at 25 degrees C over that at 42 degrees C. Furthermore, two activating regions and a site for LeuO negative regulation were identified in the dsrA promoter. The activating regions also activate transcription in vitro. DsrA decays with a half-life of 23 min at 25 degrees C and 4 min at 37 and 42 degrees C. These results demonstrate that the dsrA promoter and the stability of DsrA RNA are the thermometers for RpoS temperature sensing. Multiple inputs to DsrA accumulation allow sensitive modulation of changes in the synthesis of the downstream targets of DsrA such as RpoS.

منابع مشابه

Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding

At low temperature, translational activation of rpoS mRNA, encoding the stationary phase sigma-factor, sigma(S), involves the small regulatory RNA (sRNA) DsrA and the RNA chaperone Hfq. The Hfq-mediated DsrA-rpoS interaction relieves an intramolecular secondary structure that impedes ribosome access to the rpoS ribosome binding site. In addition, DsrA/rpoS duplex formation creates an RNase III ...

متن کامل

Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA

Hfq protein is vital for the function of many non-coding small (s)RNAs in bacteria but the mechanism by which Hfq facilitates the function of sRNA is still debated. We developed a fluorescence resonance energy transfer assay to probe how Hfq modulates the interaction between a sRNA, DsrA, and its regulatory target mRNA, rpoS. The relevant RNA fragments were labelled so that changes in intra- an...

متن کامل

Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci.

DsrA is an 87-nt untranslated RNA that regulates both the global transcriptional silencer and nucleoid protein H-NS and the stationary phase and stress response sigma factor RpoS (sigmas). We demonstrate that DsrA acts via specific RNA:RNA base pairing interactions at the hns locus to antagonize H-NS translation. We also give evidence that supports a role for RNA:RNA interactions at the rpoS lo...

متن کامل

Modification of the RpoS network with a synthetic small RNA

Translation of the sigma factor RpoS is activated by DsrA, RprA and ArcA, three small non-coding sRNAs (sRNA) that expose the ribosome-binding site (RBS) by opening up an inhibitory loop. In the RpoS network, no sRNAs have been found to pair with the RBS, a most common sRNA target site in bacteria. Here, we generate Ribo-0, an artificial sRNA, which represses rpoS translation by pairing with th...

متن کامل

Positive regulatory dynamics by a small noncoding RNA: speeding up responses under temperature stress.

Recent discoveries of noncoding regulatory RNAs have led to further understanding of the elements controlling genetic expression. In E. coli, most of those ncRNAs for which functional knowledge is available were shown to be dependent on the Hfq RNA chaperone and to act as inhibitors of translation by base pairing with their mRNA target. Nevertheless, there are also some examples where the sRNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of bacteriology

دوره 183 13  شماره 

صفحات  -

تاریخ انتشار 2001